Parallel execution of functional programs on
loosely coupled multiprocessor systems

Tetsurou Tanaka * Masato Takeichi *

Abstract

It has been suggested that functional programs are suitable for pro-
gramming parallel computers owing to their inherent parallelism. We
propose a parallel evaluation model of functional programs based on the
STG(Spineless Tagless G-machine) model proposed for sequential evalu-
ation, and describe our parallel implementation of a functional language
Gofer on the AP1000 parallel computer.

1 Introduction

It has been suggested that functional programs are suitable for programming
parallel computers. One of such conviction comes from the fact that functional
programs have a great degree of parallelism owing to freeness in the evalua-
tion order of their component expressions. However, excessive parallelism may
cause useless computation and execution overhead, and some mechanism for
controlling parallelism is required for efficient parallel evaluation.

In eager functional languages, every argument of a function should be eval-
uated in any case, and hence it may be evaluated in parallel with no worrying
about useless computation. This 1s not the case, however, for lazy functional
languages. Since arguments should not be evaluated until their values are re-
quired, we have to use strictness information or to specify the arguments being
executed speculatively in order to avoid useless computation.

For this purpose, we introduce a primitive function spec which is to be used
as

spec £ x = f x

for expressing parallel evaluation of £ x and x. Such an extension to the lan-
guage does not change the syntax nor the compiler itself. Nevertheless it is so
flexible to express many kinds of parallel algorithms in a concise way[4, 5].

*University of Tokyo {tanaka,takeichi}@ipl.t.u-tokyo.ac.jp

P1-C-1

We have introduced the function spec into Gofer[2], and proposed a new
parallel execution model of functional programs based on the STG(Spineless
Tagless G-machine) model. We will explain the basic idea of our parallel STG
model, and give some experimental results obtained so far with our implemen-
tation of Gofer on the AP1000 parallel computer.

2 STG

The STG model is a sequential evaluation model of lazy functional languages
[3]. The STG code is designed so that it is easily translated into sequential
procedural languages such as C, and the translated code runs fast on stock
computers.

2.1 Structure of closures
To archive lazy evaluation, £ x y in

glxy=h(fxy)
g2 fxy=hzz
where z = f x y

need to be represented in a structure with which the value can be computed
when needed. Although most execution models make distinction between values
in a form of WHNF(Weak Head Normal Form) and thunks for representing
unreduced expressions, STG does not distinguish them. The STG model unifies
these two into a common structure called closure(Fig. 1).

When a closure 1s evaluated, the address of the closure is assigned to a global
variable Node, and then the control is transferred indirectly to the 0-th entry of
the Info-table(Information table).

Since STG represents function applications as a flat structure(Spineless),
function definitions are easily accessed. And since STG does not distinguish val-
ues and thunks, tags for representing object types are no more necessary(Tagless).

2.2 Stacks

STG uses two stacks: A-stack for passing arguments and returning results, and
B-stack for controlling and updating.

In functional languages, function application is often reduced to another
function application. If it is translated into a tail transfer C function, the trans-
lated program will use many C stack words. In the proposed implementation
of the STG model, function application is compiled into C code which transfers
control to another C function instead of making a call the C function. This
technique reduces the depth of the C stack considerably.

P1-C-2

Figure 1: Structure of closures

Function call in more general contexts than tail recursion can also be com-
piled into a jump which transfers control to either of the continuation addresses
on the stack. The modification saves stack usage, too. In the STG model, this
idea is extended to putting vectors of continuation addresses which correspond
to the constructors of the data type of function results.

For example, since the type of el in if el then e2 else e3 is Boolean
consisting of two constructors, False and True, a vector consisting of two ad-
dresses for corresponding continuations e3 and e2 is pushed onto the B-stack
before el is evaluated. Note that such a vector is can be made at compile
time. After evaluating e1, control comes to the code for False or True, which
pops up the vector from the B-stack and causes a jump to the corresponding
continuation address.

With this technique, if expression and case expression can be efficiently
implemented. The result values of Int and Float are returned through global
variables RetInt and RetFloat respectively, and values of other types are re-
turned through the A-stack.

The B-stack is used for updating closures as well. Closures can be referred
by more than one closures, but should not be evaluated more than once. Every
closure is evaluated after its address are pushed onto the B-Stack. When eval-
uated form drops to a WHNF, the closure pushed on the B-stack is updated to
become as indirection node which points to that WHNF. The STG model also
takes advantage of the vectored return scheme for updating.

P1-C-3

Figure 2: The structure of Goals

3 Extension for parallel execution

Since parallelism introduced by the primitive function spec is dynamic, it is
impossible to distribute closures to processors at compile time. In addition to
this, since a program may include parallelism requiring more processors than
equipped, each processor should deal with as many contexts as required.

Every context is represented by a stack region. Since allocation of stack
regions for as many contexts as necessary will cause memory exhaustion, we
represent a context as a closure called goal. A goal holds the contents of the
stacks and is linked to the active goal queue when created.

3.1 Goals

When spec £ x is evaluated, a goal for evaluating x is created and exported to
another processor. And each imported goal is linked to the active goal queue of
that processor. The goal has the form represented as Fig. 2.

Each goal 1s evaluated without preemption until it suspends or completes.
Upon entering a closure, each processor checks the message buffer whether there
exist messages and processes them, if any.

When evaluation of a goal completes, the closure pointed by the goal should
be updated. In principle, the caller of the closure pushes entries for update
corresponding to the type. But the type of the closure called by a goal cannot
be known by the processor evaluating that closure. Hence updating at the
toplevel should be done in such a way that the closure is updated by a closure
consisting of RetInt, RetFloat and the contents of the A-stack, which will be
used when this closure is referred by the caller.

When the value of such a closure is requested, it is recorded in the update
frame on the B-stack, and RetInt, RetFloat and the contents of the A-stack are
restored before returning with the corresponding index of the vector as usual.

P1-C-4

Figure 3: State transition of import table

3.2 Migration

On loosely coupled multiprocessors, goals and values need to be transferred via
message passing. When goals and values are moved, closures are used as units.
Export and Import tables are used in order to evaluate a closure only once by
either one of the processors.

e WHNF
When closures representing WHNF are exported to other processors, their
copies are made. Closures pointed by such a closure are copied recursively
to some depth.

e others
Other closures are registered in the export table, and their addresses of the
export table are passed with the processor number. The receiver allocates
an import table closure for each closure passed from other processors and
records the address of the export table of the sender with the processor
number of the sender.

When a goal i1s exported, the closure itself needs to be exported for evalua-
tion. The sender of the goal allocates a closure of the import table, and sends
its address and the contents of the closure. Along with this, the original closure
is overwritten by an indirection reference to the closure. The receiver of the
goal allocates a closure of the export table and creates a goal for evaluating the
closure and returning the result to the closure of the import table of the sender.

Each element of the import table has one of three states, which are distin-
guished by the info(Fig. 3)

1. ReadVar
Each closure in ReadVar state contains a processor number of the partner
and the address of the export table, which holds the closure having been
imported. When entering it, read_var message 1s sent to the partner, and

P1-C-5

the current goal is hooked to the suspend list. Then the info of the closure
is rewritten to WaitVar.

2. WaitVar
This state corresponds to either of two cases: the ReadVar closure of the
import table has been entered, or the closure entry of the import table
i1s waiting the result to be returned from the goal having been exported.
When entering an closure in this state, the current goal becomes sus-
pended.

3. GroundVar
When the result of evaluation is sent to a WaitVar closure of the import
table, the closure entry of the import table is changed to this state. A
node in this state works same as a indirect node, and it is reclaimed at
garbage collection time.

Different types of closure require different actions of importing and export-
ing. These actions are achieved by adding corresponding entry in the Info-tables.

3.3 Suspension and Activation

When the current goal enters an import table entry which cannot be evaluated
immediately, such as ReadVar and WaitVar, it makes a goal that holds the
current context and hooks it to the suspend list of the import table, and suspends
by itself.

When execution of a goal is completed, goals and export tables which are
hooked on the goal are activated. The goals are linked to the active goal queue,
and export tables are rewritten to GroundExport and messages. Messages are
sent to the closures of the import tables waiting that value. When a message is
sent to an import table in the WaitVar state, goals which have been hooked on
the table are activated.

4 Evaluation

We modified the source code of the Gofer system by Mark P. Jones[2] to make
the internal representation of Gofer programs into our extended STG code.

At first the processor 0 evaluates a function named main which is of the
Dialogue type, and goals are forked with spec migrate to others processors and
all goals are executed in parallel. The host program only receives and processes
the requests of 1/O from cells.

To examine the performance of the system, we used the naive Fibonacci
program and the parallel version of it.

fib_spec 0 = 1

P1-C-6

Table 1: Results(fib 29, 64 cells)

program | execution time goals suspensions
(seconds) sum/max/min
fib_spec 17.7 1330318/37651/36639 510396
fib_hy(2) 7.6 431445/9040/8169 120067
fib_hy(4) 6.0 162753/3554/3005 44720
fib_hy(6) 4.0 60813/1307/1037 16130
fib_hy(8) 3.5 22980/599/303 5974
fib_hy(10) 3.7 8805/244 /127 2306
fib_hy(12) 4.1 3315/120/31 844
fib 753 1/1/0 0
| fib(SS2) | 476 | |

fib_spec 1 = 1
fib_spec (n+2) = spec ((+) (fib_spec n))
(fib_spec (n+1))
fib_hy 0 = 1
fib_hy 1 = 1
fib_hy (n+2) = if (n>10) then
spec ((+) (fib_hy (n+1)))
(£ib_hy n)

else
fib_hy (n+1) + fib_hy n

We examined a program that is ececuted in sequential fashion for small n to
make the granularity variable. In the program f£ib_hy, the threshold is 10. We
made experiments for various values of n. The result AP1000(64 cells) is shown
in Fig. 1.

Another example program is one for solving the 8-queens problem. The
result is shown in Fig 2

5 Conclusion

We have augmented the STG with several primitives for parallel evaluation,
and have implemented it on a loosely coupled multi-processor system. Current
implementation is in a preliminary stage for developing efficient systems for
functional languages, and there are many problems to be done. It is convincing,
however, that parallel implementation of functional languages based on our
proposal is a well-engineered technique as our implementation illustrates. The
performance could be considered to be sufficient for real applications.

P1-C-7

Table 2: Results(queens 8, 64 cells)

program | execution time goals suspensions
(seconds) sum/max/min
foldl_spec 4.0 333508/8828/5995 134803
foldl 36.8 1/1/0 0
| (SS2) | 14.0 | |
References

[1] Bird, R. and Wadler,P.: Introduction to Functional Programming,
Prentice-Hall, 1988.

[2] Jones, M. P.: An Introduction to Gofer, Universityof Oxford, 1991.

[3] Jones, SL, P.: Implementinglazy functional languages on stock hardware:
the Spineless TaglessG-machine, Journal of Functional Programming 1992.

[4] Tanaka, K., Twasaki, H. and Takeichi, M.: Abstract description of algo-
rithms and parallel execution of programs, Japan Society for Software Sci-
ence and Technology 9th Conference Proceedings Japan, pp. 1-4, 1992.

[6] Tanaka, T., Iwasaki, H. and Takeichi, M.: Parallel execution of functional
programs by committed choice, Japan Society for Software Science and
Technology 9th Conference Proceedings Japan, pp. 85-88, 1992.

P1-C-8

