
修士学位論文

Procedural content generation for tower
defense games

(タワーディフェンスゲームのための手続き
型コンテンツ生成)

2021年度
広域科学専攻　広域システム科学系

31-206830

許 悦銘

ABSTRACT

As the importance of Procedural Content Generation (PCG) for game development
increases, researchers explore new avenues for generating high-quality content. One rela-
tively new paradigm is Procedural Content Generation via Machine Learning (PCGML).

Many machine learning methods have been proved effective for PCG tasks, such as
dungeons generation, puzzle generation, maze generation. Nevertheless, the effectiveness
of PCGML for complicated game level generation remains unclear. For example, tower
defense games require detailed level design and difficulty balancing to create an enjoyable
player experience, and there are still few studies in this area.

This research focuses on adversarial reinforcement learning-based PCG, which suc-
cessfully applied to truck generation for racing games. We developed a tower defense
game simulator based on an existing commercial game’s rules as an environment for re-
inforcement learning agents. We found suitable action spaces for agents playing tower
defense games and explored methods to generate tower defense games levels using rein-
forcement learning.

Acknowledgements

Throughout the writing of this thesis, I have received a great deal of support
and assistance.

I would first like to thank my supervisor, Tetsuro Tanaka , whose expertise
was invaluable in formulating the research questions and methodology. Your
insightful feedback pushed me to sharpen my thinking and brought my work to
a higher level.

I would particularly like to acknowledge all members of Tanaka Lab. and
Game Programming Seminar and for their wonderful collaboration and patient
support.

Finally, I would like to thank my family for their wise counsel and sympathetic
ear. You are always there for me.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Outline . 2

2 Background 3
2.1 Level and Tile . 3

2.1.1 Level . 3
2.1.2 Tile . 3

2.2 Tower Defense . 4
2.2.1 Basic gameplay elements . 4
2.2.2 Gameplay . 4
2.2.3 Abilities of towers . 5
2.2.4 Attributes of towers . 5

2.3 Procedural Content Generation . 5
2.3.1 Basic concepts of Procedural Content Generation 6
2.3.2 Search-Based Procedural Content Generation 6
2.3.3 Procedural Content Generation via Machine Learning . . . 6

3 Related Works 7
3.1 Reinforcement Learning . 7
3.2 Level Generation for Tower Defense games 8

3.2.1 Öhman’s work . 8
3.2.2 Liu et al.’s work . 8

3.3 Level Generation via reinforcement learning 9
3.3.1 PCGRL . 10
3.3.2 ARLPCG . 11

4 Environment 13
4.1 Unity . 13
4.2 Arknights . 13
4.3 Tower Defense Game Simulator . 15

4.3.1 Tiles . 16
4.3.2 Towers . 16
4.3.3 Enemies . 16
4.3.4 Levels . 17
4.3.5 Visualization Tools . 18

5 Proposed Methods 19
5.1 Training Process . 19
5.2 The Solver . 20

5.2.1 State . 21

iv

5.2.2 Action . 22
5.2.3 Reward . 22

5.3 The Map Generator . 23
5.3.1 State . 23
5.3.2 Action . 23
5.3.3 Reward . 24
5.3.4 End Conditions of Episodes 25

5.4 The Wave Generator . 25
5.4.1 State . 25
5.4.2 Action . 25
5.4.3 Reward . 25
5.4.4 End Conditions of Episodes 26

6 Experiments 27
6.1 Unity ML-Agents Toolkit . 27

6.1.1 Hyperparameters . 27
6.2 Experiment about the solver action space 28

6.2.1 Preconditions . 28
6.2.2 Results . 29
6.2.3 Discussions . 29

6.3 Experiments of Level Generation 31
6.3.1 Preconditions . 31
6.3.2 Results . 33
6.3.3 Discussions . 35

7 Conclusions and Future Work 40

References 42

v

Chapter 1

Introduction

Procedural Content Generation (PCG) is the process of algorithmically creating
content. PCG can be employed to increase games’ replay value and reduce the
production cost and effort for the games industry[1]. Some forms of game content
such as trees and landscapes have been generated procedurally for a long time.

This study explores the methods of using reinforcement learning to generate
levels for Tower Defense (TD) games.

1.1 Motivation

On the one hand, players are always happy to get a variety of experiences from
games, and their demands on the quality of games are becoming higher and
higher. As a result, the amount of content in modern video games is becoming
larger and larger. On the other hand, developers of ongoing games, such as mo-
bile games and Massively Multiplayer Online Role-Playing Games (MMORPGs),
need to add new content to their games to keep players interested. Finally, with
the popularity of the Metaverse, User Generated Contents (UGC) in games is
starting to gain the attention of most game developers. PCG can be a tool for
mass generation of a particular art asset in a game or an algorithmic model to
assist designers or players in creating game assets.

However, many traditional PCG usually needs developers to do much hand-
coding work. Machine Learning (ML) has achieved great success in content
production, including generating audio, photo, and other content types across
different domains. It stands to reason that machine learning would apply to
games content generation. One relatively new paradigm of PCG called Proce-
dural Content Generation via Machine Learning (PCGML)[2] has had enjoyed
considerable popularity recently. With PCGML, the extra workload imposed on
game developers by traditional PCG methods is expected to be mitigated.

We consider the design of game levels an iterative process of alternating design
and testing. In this iterative process, designers and testers will get their work done
better and better. Reinforcement Learning (RL) is a kind of machine learning,
and video games are one of the most widely used fields. Therefore, we propose
to use reinforcement learning agents to replace human designers and testers.

The Tile-Based games are one of the most popular testing grounds for level
generation, in which levels are made up of different types of Tiles, including
walls, roads, collectible items, and even enemies. Many previous works [3], [4]
have made outstanding contributions to the level generation of tile-based games.
However, there is little research on PCGML applied to more complicated games
such as Tower Defense (TD) games. TD is a popular casual game genre that
has proven to be a good testbed for AI and game research.[5]. TD games often

1

require precise level design, making us think it is challenging and meaningful to
study level generation in tower defense games.

1.2 Goals

The main goals for this study are the following:

• Develop an environment where reinforcement learning agents can be trained,
i.e., a tower defense game simulator.

• Use reinforcement learning to train agents to play tower defense game levels.

• Use reinforcement learning to train agents to generate levels for tower de-
fense games.

1.3 Outline

This thesis is organized as follows:
Chapter 2, Background: Introduces the background knowledge that the reader

needs to know in order to understand this thesis.
Chapter 3, Related Works: Introduces s several works of high relevance to

this study.
Chapter 4, Environment: Introduced the tower defense game simulator we

developed.
Chapter 5, Proposed Methods: Introduces the method we use to generate

levels for tower defense games.
Chapter 6, Experiments: Introduces the experiments we did to generate the

levels for the tower defense game.
Chapter 7, Conclusions and Future Work: Introduces the findings of this

study and the areas that still need work.

2

Chapter 2

Background

This chapter presents the necessary background information needed to under-
stand this thesis. It starts with explaining levels and tiles and is followed by a
description of tower defense games. Finally, it presents the definition of procedu-
ral content generation used in this thesis.

2.1 Level and Tile

This section uses Super Mario Bros.1 as an example to illustrate two critical
terms about games that will appear in this thesis, namely level and tile.

2.1.1 Level

A level is a section of a complete game in which the player usually needs to
complete a specific goal to advance to the next level. A level is a combination
of game elements. Different combinations result in different game flows and
difficulties. Figure 2.1 shows different combinations of map elements and enemies
can make up different levels in Super Mario Bros.

(a) World 1-1. (b) World 8-4.

Figure 2.1: Examples on different levels of Super Mario Bros.

2.1.2 Tile

A tile is a minimum unit that can form a game level or a part of a game level.
Games that are made up of tiles are called tile-based games, and the collection
of all tiles used in a tile-based game is called tilesheet. Figure 2.2 shows a part
of the tilesheet of Super Mario Bros.

1Super Mario Bros. is a platform game developed and published by Nintendo.

3

(a) Tiles of ground and stone. (b) Tiles of pipes and scenery.

Figure 2.2: A part of tilesheet of Super Mario Bros.

2.2 Tower Defense

This section illustrates the basic gameplay of tower defense games and the prop-
erties and abilities of towers in games. As a popular game genre, tower defense
games have many variants in which the various parts differ. Therefore, to make
this study more effortless for the reader to understand, only the parts common
to most tower defense games are presented in this section.

2.2.1 Basic gameplay elements

In order to understand the gameplay of tower defense games, it is necessary to
have an understanding of the basic gameplay elements of tower defense games.
The following are the four basic gameplay elements of tower defense games:

• The resource can be spent by players to build or upgrade towers, commonly
in the form of money, deployment points, etc. The resource can usually be
obtained by killing enemies in the level.

• The defensive points are places where players must prevent enemies from
reaching.

• The towers are buildings that automatically attack enemies and generally
cannot be changed in position after being built. Depending on the game
theme, towers may appear in other forms, such as plants, operators, etc.

• The wave refers to a group of enemies. Game designers usually design the
waves in a level carefully to give the player a suitable playing experience.
The wave information usually includes the type of enemies, the number of
enemies, and the time of their appearance.

2.2.2 Gameplay

Tower Defense (TD) is a subgenre of strategy game in which players build towers
on the map that automatically attack to prevent enemies from reaching defense
points. A complete tower defense game usually consists of multiple levels con-
sisting of several waves. In each wave, many enemies appear from the map and
move towards the defense point. A typical game flow for a level is as follows:

1. Depending on the level setting, players will be granted a set amount of
resource and life count to begin with, which may be spent to place and
improve towers.

4

2. At the beginning of the wave, enemies appear from the map and move to-
wards the defense points. By killing enemies, the player may gain additional
resources.

3. Players should wisely arrange the use of resources to eliminate as many
enemies as possible.

4. The player’s life count will be reduced if enemies arrive at the map’s exit
points. The players win when all enemies have been defeated and fail when
the player’s life count is zero.

2.2.3 Abilities of towers

As one of the core elements of tower defense games, game designers often provide
players with towers with different abilities to deal with different enemies and
situations. As a result, tower defense games are simple to play but often have a
certain depth of strategy. The following are four essential attributes of towers:

• Attack Power is used to calculate the damage dealt when each attack is
made on the enemy. Generally, the more times the player upgrades the
tower, the higher the attack power will be.

• Attack Range is the distance at which a tower may attack an enemy. Gen-
erally, the more times the player upgrades the tower, the wider the attack
range will be.

• Attack Speed is the frequency of the attack. Generally, the more times the
player upgrades the tower, the faster the attack speed will be.

• Attack Type is the type of damage caused to the enemy. A tower may deal
different damage to different types of enemies.

2.2.4 Attributes of towers

In addition to abilities, towers usually have some primary attributes. While
playing a level, players can enhance these attributes of towers by upgrading the
towers they have already built. Here are four common attributes:

• Slow means the movement speed of the attacked enemy will be reduced.

• Damage over time (DoT) can cause the affected enemy to take damage
until the effect expires constantly.

• Splash can attack more than one enemy at a time.

• Assist means other towers next to this tower will be strengthened.

2.3 Procedural Content Generation

This section first explains the basic concept of Procedural Content Generation
(PCG). Then it introduces Search-Based Procedural Content Generation, one of
the most frequently used PCG methods, and finally briefly introduces Procedural
Content Generation via Machine Learning (PCGML), which is the most relevant
to this study.

5

2.3.1 Basic concepts of Procedural Content Generation

Procedural Content Generation (PCG) refers to the algorithmic generation of
game assets with limited or indirect input. In other words, PCG refers to com-
puter software that can create game content independently or together with one
or more human players or game designers.

Content here refers to almost everything in the game: levels, game rules,
graphics, story, music, etc. However, note that the game engine and non-player
characters (NPC AI) are not considered to be content in the definition [6] our
use.

2.3.2 Search-Based Procedural Content Generation

Search-based PCG [7] is one of the generate-and-test algorithms. This algorithm
consists of a generating mechanism and a test mechanism. After generating a
candidate content instance, it is checked against a set of criteria. If the test fails,
all or part of the candidate content is rejected and regenerated, and the process
is repeated until the content meets the requirements.

In the test mechanism, the criteria are represented by a test function. This
test function takes the candidate content as input, and the output is a vector
or a real number. There are different names for such a test function, such as
fitness, evaluation, and utility function. In this study we will use the name fitness
function and call its output fitness.

Therefore, search-based PCG is an algorithmic model that allows the fitness
of the generated content to be continuously improved to generate the desired
content.

2.3.3 Procedural Content Generation via Machine Learning

Summerville et al. define Procedural Content Generation via Machine Learning
(PCGML) as the generation of game content by models that have been trained
on existing game content[2].

One of the predictable advantages of PCGML is its adaptability brought about
by the learning process. If a traditional PCG is used in the game development
process, it is difficult to avoid adjusting the PCG method when the game itself
changes. While game development is often a long iterative process, the frequent
occurrence of such adjustments of the PCG method can create an additional
workload for the developer. This is contrary to part of the original purpose of
using PCG. The adaptability of PCGML gives it the possibility of alleviating this
problem.

6

Chapter 3

Related Works

This chapter first introduces the basic concepts related to reinforcement learning.
Then it presents the related work on level generation for tower defense games.
Finally, the application of reinforcement learning in PCG is introduced.

3.1 Reinforcement Learning

This section presents a basic description of reinforcement learning and explains
some terms that will appear in this thesis. Since reinforcement learning is a
complex concept, we will explain fundamental terms instead of the reinforcement
learning algorithm.

Reinforcement Learning (RL) is one of three fundamental machine learning
paradigms, alongside supervised learning and unsupervised learning. Reinforce-
ment learning is a model for learning optimal policy by trial and error. Be-
cause video games provide the ideal environment for reinforcement learning, video
games are one of the most widely used areas of reinforcement learning algorithms.
There are five basic elements in reinforcement learning as follows:

• The agent is the subject that makes the action in the environment. In most
cases, the agent is the player-controlled character.

• The environment is where the agent is located, such as a room and a level
in games.

• The state is the information about the agent’s environment, and the set of
all possible states is called the state space. It is usually denoted as s ∈ S.

• The action is made by the agent, such as moving, attacking, and the set of
all possible action is called the action space. It is usually denoted as a ∈ A.

• The reward is given to the agent according to a pre-determined rule after
the agent makes an action. It is usually denoted as r.

On top of the above basic elements, we can describe the core elements of
reinforcement learning. The return is the sum of all future rewards the agent can
gain, starting with a certain state. It is usually denoted as G:

G
.
=

T∑
k=t

rk, (3.1)

where t is the current moment, and T is the final moment. The policy is a
mapping from states to actions, indicating what the agent will do in a given
state. The goal of reinforcement learning is to find a policy that maximizes the
expected value of return.

7

3.2 Level Generation for Tower Defense games

This section presents the work of Öhman and the work of Liu et al. These two
works conducted level generation experiments using the rules of a self-created
simple tower defense game and the rules of an existing tower defense game, re-
spectively.

3.2.1 Öhman’s work

Öhman[8] proposed a method to generate levels for a 3D tower defense game
implemented by himself (see Figure 3.1(a)), mainly using fitness function and
Perlin noise.

Öhman divided the map generation into two phases: terrain and path gener-
ation. Terrain generation refers to the use of Perlin noise to generate the height
map of the plane. After the terrain is generated, the path starts from a random
point and expands it. Figure 3.1(b) shows that the style of the generated path
can be controlled by a set of parameters, such as Max Path Point Count, Max
Branchings, etc. Finally, the generated levels are evaluated using a predefined
fitness function and discarded if the score is below a certain threshold.

The generation of wave information is divided into two parts: the number of
waves and the number of enemies in the wave. The number of waves is calculated
by an equation related to path density and level difficulty. The number of enemies
is randomly generated between 1 and 5.

(a) (b)

Figure 3.1: Screenshot from the implemented game (Left) and the parameters
for path generation (Right). From J. Öhman,“ Procedural generation of tower
defense levels,”2020.

3.2.2 Liu et al.’s work

Liu et al.[9] presented a framework that is capable of automatically generating lev-
els with a similar style of existing content for tower defense games and conducted
their experiments in a developed in-house tower defense game environment(see
Figure 3.2).

Liu et al. considered that the tower defense level consists of four fundamental
elements as follows:

• Roads refer to the combination of curves or straight lines in the map. En-
emies will move along the roads.

• Tower point refers to the place where the player can build a tower.

8

• Enemy sequence refers to wave information.

• Automated playability testing ensures that the generated level is appropri-
ately designed.

The method of road generation is drawn from the analysis of existing tower
defense levels. An initial road segment is randomly generated near the map’s
center that extends toward the map edge. A segment will be generated near
halfway toward the map edge if more branches are needed. Repeat this process
until the road is completed.

The tower points are generated by a random search method. First, two to
three points are placed near each road intersection, and then the rest of the points
are randomly placed along the road and ensure that no two points are too close to
each other. They also computed the road coverage distribution of the generated
tower points and tower points in human-designed levels. Finally, the reasonable
tower points are filtered using their Kullback-Leibler (KL) divergence.

The enemy sequence is generated by a genetic algorithm. To reduce the
amount of computation required, they first extract a cluster of enemies from the
original level. Then, the generation is done using these clusters rather than an
individual enemy.

Automated playability testing was implemented using a reinforcement learn-
ing agent based on Monte Carlo search. They also calculated the difficulty for
each moment while playing the level to get the difficulty of the whole level.

Figure 3.2: Screenshot from the implemented game. From S. Liu, L. Chaoran, L.
Yue, M. Heng, H. Xiao, S. Yiming, W. Licong, C. Ze, G. Xianghao, L. Hengtong,
D. Yu, and T. Qinting,“ Automatic generation of tower defense levels using
pcg,” in Proceedings of the 14th International Conference on the Foundations
of Digital Games, FDG ’19, (New York, NY, USA), Association for Computing
Machinery, 2019.

3.3 Level Generation via reinforcement learning

This section presents two reinforcement learning-based level generation frame-
works.

9

3.3.1 PCGRL

Khalifa et al.[4] proposed a framework for 2D tile-based game level generation
using reinforcement learning, namely Procedural Content Generation via Rein-
forcement Learning (PCGRL). Figure 3.3 shows that there are three important
modules in the PCGRL framework: Problem, Representation, and Change Per-
centage.

Figure 3.3: The system architecture for the PCGRL. From A. Khalifa, P. Bon-
trager, S. Earle, and J. Togelius,“ Pcgrl: Procedural con- tent generation via
reinforcement learning,”2020.

The Problem module provides all information related to the current generation
task and has two main functions. The first function is to evaluate the change
in the quality of the level after the agent takes action and gives a reward. The
second function is to determine when to terminate the generation process.

The Representation module is mainly responsible for defining the agent’s state
space and action space. For simplicity, they represented the level as a 2D array
of integers. The value in the array corresponds to the tile type (see Figure 3.4.
In their work, the following three represents are defined:

• Narrow representation is the simplest way to represent a problem, with a
minimal state and action spaces. In the generation process using narrow
representation, the agent is given a position in the level at each step and
is allowed to change the tile type of this position. Thus, its state space
includes the level’s current state, and its action space size is the number of
tile types.

• Turtle representation is inspired by turtle graphics languages. In the gen-
eration process using the turtle representation, each step of the agent can
move and change the tiles along the way. Hence, the state space contains
the current state of the level and the agent’s location, and the action and
the action space includes the direction of movement and all tile types.

• Wide representation is the most complex way to represent the problem. At
each step, the agent can select any position of the level and change the tile
type. Thus, its state space contains the current state of the level, and the
action space includes all positions and all tile types in the level.

10

Figure 3.4: Game level as 2D integer array. From A. Khalifa, P. Bontrager, S.
Earle, and J. Togelius,“Pcgrl: Procedural con- tent generation via reinforcement
learning,”2020.

The Change percentage is a vital hyperparameter that determines how many
tiles the agent is allowed to change. Therefore, it also limits the length of episodes
during the training process.

3.3.2 ARLPCG

Gisslén et al.[10] introduced a model based on adversarial reinforcement learn-
ing, which can improve the generalization of a reinforcement learning agent and
generate levels for 3D games. It is called Adversarial Reinforcement Learning for
Procedural Content Generation (ARLPCG).

The model of ARLPCG consists of two important parts: the Generator and
the Solver, and both parts are reinforcement learning agents. Figure 3.5 shows
the system architecture for the ARLPCG.

Figure 3.5: The system architecture for the ARLPCG. From L. Gisslén, A.
Eakins, C. Gordillo, J. Bergdahl, and K. Tollmar,“ Adversarial Reinforcement
Learning for Procedural Content Generation,”2021.

The generator is the agent responsible for generating the level. The generator
in ARLPCG defines a new reward structure based on PCGRL: the generator’s
reward is partially derived from the solver, i.e., the solver’s performance in the
environment (whether it can clear the level) affects the generator’s reward. The
solver is the agent responsible for playing the level. The reason for using reinforce-

11

ment learning agents instead of scripted agents here is to improve the generality
of this model.

In Gisslén et al.’s work, the ARLPCG framework was used to generate levels
for two games: a platform game and a racing game (see Figure 3.6). For the
platform game, the levels consist of a starting point, an endpoint, and several
platforms. For the racing game, the level consists of a start point, an endpoint,
obstacles, and a track, where the track consists of several track segments inter-
connected, and the generator needs to ensure that obstacles do not obstruct the
track. Gisslén et al. used a progressive approach to level generation for both
games, i.e., the generator generates the level with an empty initial state and
generates the level segment by segment.

However, the levels of tower defense games are more complex than those of
the two games mentioned above and can not be simply segmented. Therefore, it
is necessary to check whether the method based on the ARLPCG framework can
be used to generate tower defense game levels. Our proposed method is based
on the ARLPCG framework, and a detailed description of the method will be
mentioned in Chapter 5.

(a) The platform game. (b) The racing game.

Figure 3.6: The games used in Gisslén et al.’s work. From L. Gisslén, A. Eakins,
C. Gordillo, J. Bergdahl, and K. Tollmar,“Adversarial Reinforcement Learning
for Procedural Content Generation,”2021.

12

Chapter 4

Environment

We developed a tower defense game simulator based on the rules of Arknights in
Unity as an environment in which reinforcement learning agents can be trained.
This chapter first describes the basic information about Unity and Arknights and
why we chose to use them. Then, it presents the details of the tower defense game
simulator we developed.

4.1 Unity

This section introduces the concept of game engines and why we chose to use
Unity to develop our tower defense game simulator.

Game engines are software that game designers can use to develop a video
game or some interactive real-time graphics application. Game engines often
include visual development tools and reusable components (graphics, sound,
physics, and artificial intelligence) integrated with the development environment.
Using game engines for development can save developers significant development
costs, reduce development complexity, and shorten the time to market, all critical
factors for the highly competitive game industry.

Game development teams generally develop non-public game engines. Still,
there are also publicly available general-purpose game engines that all developers
can use, and Unity is one of the most popular ones. Unity is a cross-platform 2D
and 3D game engine developed by Unity Technologies1 to develop cross-platform
video games. Figure 4.1 shows the interface of Unity.

We chose to use Unity to develop our tower defense game simulator because
Unity Technologies has developed a reinforcement learning toolkit for Unity,
namely The Unity Machine Learning Agents Toolkit (ML-Agents). ML-Agents
will be described in more detail in Chapter 6.

4.2 Arknights

This section introduces the basic information of Arknights and some differences
in its rules from traditional tower defense games. It also describes the reasons
why we chose Arknights as a testing ground.

Arknights is a tower defense mobile game developed by Hypergryph 2 (See
Figure 4.3). It was released in China on 1 May 2019, in other countries on 16
January 2020. In order not to cause ambiguity, it is necessary first to introduce
the differences between Arknights and traditional tower defense games:

1Unity Software Inc. is a video game software development company based in San Francisco.
2Hypergryph Network Technology Co. Ltd. is a mobile video game development company

based in Shanghai, China.

13

Figure 4.1: Screenshot of Unity game engine.

• While resources in traditional tower defense games are usually obtained by
eliminating enemies, resources, which is called Deployment Points (DP) in
Arknights, can be obtained by players in three ways:

– DP regenerates at the rate of 1 DP per second.

– Some towers can generate additional DP when they eliminate enemies.

– Some towers can generate extra DP by activating skills.

• In traditional tower defense games, players can upgrade towers when they
play the level to enhance their abilities, while there is no such system in
Arknights. In Arknights, players can level up towers by using game props
before starting the level like a role-playing game.

• The number of towers in Arknights is enormous. Therefore, unlike tradi-
tional tower defense games where players can build all kinds of towers while
playing a level, they need to select up to 12 types of towers before playing
a level. The player can only build these 12 selected towers when playing
the level.

• The tiles in Arknights level map can be divided into two classes based on
the type of towers that can be built, namely high tiles and low tiles (see
Figure 4.2). In general, players can build melee towers on low tiles and
ranged towers on high tiles. Besides, most enemies move on paths made up
of low tiles.

• In Arknights, players can build towers in the path of enemies to block their
progress, and the blocked enemies can attack the towers built by the player.

As mentioned in Chapter 3, PCG studies on tower defense games are gener-
ally conducted based on existing game rules or self-created simple game rules.
We chose to base our level generation study on the rules of Arknights for three
reasons:

14

(a) The high tiles. (b) The low tiles.

Figure 4.2: Screenshot of a level from Arknights.

• Arknights has a very active player community, and there is detailed infor-
mation about levels and the numerical aspects of the game in the wiki3.
This community and information facilitate the development of our tower
defense game simulator.

• Arknights is a tower defense game with role-playing games’ elements ne-
cessitating more intricate level design and difficulty balance to provide a
satisfying player experience. It is very challenging and rewarding to study
generating such levels.

• The average time to complete a level in Arknights is relatively short, so the
reinforcement learning agent has less time to train, which facilitates the
conduct of experiments.

Figure 4.3: Screenshot of Arknights.

4.3 Tower Defense Game Simulator

Arknights is an ongoing game, so game content, including new enemies, new
levels, new towers, are constantly being added to the game4. To ensure the
boundaries of this research, only a portion of this content has been selected for
implementation into the tower defense game simulator. This section introduces

3http://prts.wiki/ for the numerical aspects of Arknights and https://map.ark-nights.com/
for level information.

4The game data mentioned is as of 26 December 2021.

15

4.3.1 Tiles

We selected 8 of the 25 existing tiles to be implemented into the tower defense
game simulator. These eight selected tiles are the fundamental components of
Arknights’ map. Table 4.1 shows the details of the eight types of tiles we selected.

Table 4.1: Tiles

Tile Tile type Description

Invalid Padding of map

Low Component tile of ground path

High Component tile of high platform

Low Forbidden Towers can not be placed on

High Forbidden Towers can not be placed on

Enemy Spawn Point Enemies’ spawn point

Flying Enemy Spawn Point Flying enemies’ spawn point

Defense Point Players’ territory

4.3.2 Towers

As mentioned in Section 4.2, Arknights has a large number of different types of
towers, and the players need to select up to 12 types of towers as optional towers
before playing each level. It should be noted that although the tower selection
strategy is also an essential part of playing Arknights, this strategy is not part of
this study. In this study, we will circumvent considering this strategy by fixing
the use of 12 types of towers.

Arknights utilizes a Gacha5 system for players to obtain the towers. We
selected 12 types of towers from the existing 217 types of towers that players can
get for free to implement and ensure that these 12 types of towers are sufficient
to deal with most situations in the game.

Table 4.2 shows the basic information of the towers we chose, where DP cost
refers to the resources the player needs to build the tower, Position refers to what
type of tiles the players can build on the tower, and Block refers to the number
of enemies the tower can block.

4.3.3 Enemies

We selected 10 of the 421 enemies to be implemented into our tower defense game
simulator. These thirteen enemies contain the following classic types of enemies
in tower defense games:

• Enemies with little HP but fast movement speed.

• Enemies that can fly but cannot attack the tower.

• Ranged enemies that can attack the tower from a distance.

• Enemies with high resistance to physical attacks from towers.

• Enemies with high resistance to magical attacks from towers.
5Gacha games, like loot boxes, entice players to spend in-game cash in exchange for a random

virtual object. The in-game currency may be earned via gameplay or purchased with real-world
money from the game’s publisher.

16

Table 4.2: Basic information of the towers

Code DP cost Position Block Tower Type Range Attack Type

LT05 8 Low 1 Attacker Melee Physical
BS04 9 Low 2 Attacker Melee Physical
PA12 9 High - Attacker Ranged Physical
PA44 9 High - Attacker Ranged Physical
PA61 10 High - Attacker Ranged Magical
PA41 13 Low 1 Attacker Melee Physical
PA13 15 High - Healer Ranged -
PA43 15 High - Healer Ranged -
PA45 16 Low 3 Attacker Melee Physical
PA14 16 Low 3 Attacker Melee Physical
PA42 16 High - Attacker Ranged Magical
PA15 27 High - Attacker Ranged Magical

4.3.4 Levels

We selected 21 from 171 mainline levels to be implemented in our tower defense
game simulator. Table 4.3 shows the basic information of these 21 levels, where
Recommended Level refers to the recommended average level of the towers used
by the player to play the level, as given by the game designers of Arknights;
Enemies refers to the total number of enemies in the level; Life Count refers to
the maximum number of enemies that can be tolerated to reach the defense point
before the end of the level:

Table 4.3: Basic information of the levels

Code Recommended Level Enemies Life Count

0-1 Level 1 11 20
0-2 Level 1 14 15
0-3 Level 1 23 15
0-4 Level 1 24 15
0-5 Level 1 24 15
0-6 Level 1 31 15
0-7 Level 1 20 15
0-8 Level 1 40 15
0-9 Level 1 64 15
0-10 Level 1 35 10
0-11 Level 1 37 10
1-1 Level 5 33 10
1-2 Level 5 41 10
1-3 Level 5 36 10
1-4 Level 5 39 10
1-5 Level 5 57 10
1-7 Level 10 41 10
1-9 Level 10 35 10
1-10 Level 10 11 10
2-1 Level 10 50 10
S2-1 Level 10 25 10

17

4.3.5 Visualization Tools

In addition to the above gameplay content, we also developed a visualization tool
for the environment state based on XCharts[11]. With this tool, we can check in
real-time through charts whether the state of the game environment is encoded
as we expect it to be. Figure 4.4 shows visualization tools we developed.

Figure 4.4: Screenshot of the tower defense game simulator (Up). Some charts
generated by visualization tools (Down).

18

Chapter 5

Proposed Methods

The primary purpose of this study is to explore how to perform level generation
for tower defense games through reinforcement learning. The method we use
is based on the ARLPCG framework[10], where the solver agent and generator
agent take action in the environment in turn and design rewards for the generator
agent related to the performance of the solver agent.

However, unlike ARLPCG[10], we trained three agents in a tower defense
game simulator: the Solver for playing levels, the Map Generator for generating
maps, and the Wave Generator for generating wave information.

5.1 Training Process

Before going into the details of the individual parts, it is necessary to describe
how we trained the three agents in the tower defense game simulator. The three
agents are trained in an iterative way where other agents play with the current
trained data when an agent is training. The following is our training process:

1. Read the map and wave information of a level implemented in the tower
defense game simulator.

2. The map generator changes the map in the level.

3. The wave generator changes the wave information in the level.

4. Start the level, i.e., the enemies start appearing on the map according to
the wave information.

5. The solver trains an episode in the environment, i.e., plays the level until
it succeeds or fails.

6. Calculate the reward for the map generator and the wave generator based on
the solver’s playing result. The details of the calculation will be mentioned
in the following section.

7. Check whether the episodes of the map generator and the wave generator
are finished. The end conditions of generators’ episodes will be mentioned
in Section 5.4.4.

(a) Yes: go to 1.

(b) No: go to 2.

19

5.2 The Solver

This section presents how we trained the solver agent from three aspects: state,
action, and reward.

We trained the solver through reinforcement learning with PPO [12]. We rep-
resent the tower defense games’ environment states by a vector and a set of map
size 2-dimensional tensors. We adjusted the IMPALA ResNet ’s implement[13]
by removing the max-pooling layers and used it to process the map size tensors.
This is because using the max-pooling layer would cause unnecessary loss of state
information.

Figure 5.1: Neural network architecture.

20

5.2.1 State

We encoded the state of the environment based on what human players need to
focus on when playing Arknights.

Figure 5.2 shows how the states are represented as map size tensors. The
detail of the map size observations is presented in Table 5.1. The vector of states
will be concatenated to flatten map size tensors before feeding to full-connected
layers. Table 5.2 shows the detail of the vector.

Figure 5.2: Illustration of how the states are represented

Table 5.1: The detail of map size tensors

State Data Type Channels

The type of tiles one-hot 8

If in towers’ attack range one-hot 36
Number of flying enemies one-hot 6
Number of normal enemies one-hot 6
Number of ranger enemies one-hot 6
Number of melee enemies one-hot 6
Number of enemies who can not attack one-hot 6
Number of enemies in the next wave one-hot 6
Physical DPS of existing enemies float 1
Magical DPS of existing enemies float 1
Defense of existing enemies float 1
Magical resistance of existing enemies float 1
Current HP of existing enemies float 1

Number of enemies towers can block one-hot 6
Skill’s state of towers one-hot 5
Defense of existing towers float 1
Magical resistance of existing towers float 1
Current HP of existing towers float 1

Melee DPS of existing towers float 1
Ranged physical DPS of existing towers float 1
Ranged magical DPS of existing towers float 1
HPS of existing towers float 1

21

Table 5.2: The vector of states

State Data Type Length

Current DP integer 1
Player’s current HP integer 1
Towers’ DP costs integer 12
Towers’ type (ranger or melee) one-hot 24
Towers’ type (attacker or healer) one-hot 24
Does player have enough DP to place towers one-hot 24

5.2.2 Action

In Liu et al.’s study[9], the agent’s action is defined by simulating the operation of
the mouse on the screen. However, with Arknights as a tile-based game, we can
reduce the action space by simplifying the operations on the screen to operations
on tiles. Theoretically, for each tile, the player can do the following actions:

• Build a tower.

• Destroy a tower on this tile.

• Activate the skill of a tower on this tile.

Obviously, among the above actions taken on tiles, some actions are not al-
lowed by the game rules, such as activating the skill of a tower on a tile that has
not yet built a tower. In this study, we call such actions that are not allowed
by the game rules Invalid Actions, and on the contrary, we call actions that are
allowed by the game rules Valid Actions. We define the following three types of
action spaces according to how to deal with invalid actions:

• The agents withWide Action Space have the largest action space containing
valid and invalid actions. When the agent tries to do an invalid action, the
action will not be executed, and the agent will be given a negative reward.

• The agents with Narrow Action Space have the smallest action space only
containing valid actions.

• Medium Action Space contains all valid actions and some invalid actions.
We get medium action space by removing the invalid action of building a
tower without enough resources from the wide action space.

Through defining these three types of action spaces, we can experiment to find
the most suitable action space. This experiment will be mentioned in Chapter 6.

5.2.3 Reward

Except for the negative reward that agents are given when they try to perform
an invalid action, we designed the reward mainly according to the rules of tower
defense games, i.e., we always want agents to destroy as many enemies as possible.
Thus, agents receive a positive reward when the tower kills an enemy and a
negative reward when the enemy reaches a defense point. We also set some
additional rewards, such as a small positive reward for agents after each tower
attack on the enemy. We used three reward settings in experiments, and these
details will be mentioned in Chapter 6.

22

5.3 The Map Generator

This section describes the construction of the map generator in terms of state, ac-
tion, and reward. The map generator uses wide representation from the PCGRL
framework[4].

5.3.1 State

Like the solver, the map generator’s observable state of the environment has
two parts: information about the types of tiles on the map, i.e., the top layer
of the Figure 5.2, an 8-channel two-dimensional tensor; the wave information of
the level. Table 5.3 shows the status of one wave information, and the wave
information of a level consists of multiple such information.

Table 5.3: The states of one wave information

State Data Type Length

Enemies’ type one-hot 11
Enemies’ spawn point one-hot 42
Enemies’ target defense point one-hot 21
Enemies’ number integer 1
First enemy’s appearance time float 1
Enemies’ interval between the appearance float 1

It should be noted that because we need to represent the empty wave infor-
mation, the one-hot encoding length of the enemy type state is 11, although only
ten types of enemies are implemented in the tower defense game simulator.

In this study, we do not discuss the case where the number of defense points
is greater than 20. Therefore, adding the encoding indicating the empty wave
sub-information, the one-hot encoding length of the defense point state is 21.

There are two types of enemy spawn points in our tower defense game sim-
ulator, used to spawn regular enemies and flying enemies. In reasonable wave
information, enemies should be generated according to their type (regular or
flying) at the corresponding spawn point. However, since there is a mismatch be-
tween the enemy type and the spawn point type during the generation of the wave
information, we also need a one-hot code to represent this situation. Therefore,
the length of the one-hot encoding for the enemy spawn point is 42.

5.3.2 Action

The map generator can change the type of tile at any location on the map.
However, we have special treatment for the following two situations to ensure
that the solver can play the level properly. When these situations occur, the
action will not be executed, and the map generator will be given a negative
reward.

• After the action is taken, the number of enemy spawn points or defense
points on the map is 0 or greater than 20.

• After the action is taken, the enemy’s movement path is blocked in the
existing wave information.

23

5.3.3 Reward

The map generator’s reward consists of two main parts: Internal Reward and
External Reward. In general, we want to control the basic structure of the gener-
ated maps through internal reward and the difficulty of the maps through external
reward. The map generator’s reward is calculated as:

r
.
= λ · rext + wint · rint, (5.1)

where r is the reward, rext and rint are the external and internal rewards, re-
spectively, and wint ∈ [0, 1] and λ are parameters. λ is the coefficient of the
auxiliary input rext, and the positive or negative of this parameter determines
the preference of the map generator for the solver’s playing result, i.e., success or
failure.

Internal Reward

To calculate the internal reward, we set a series of goals for the map generator
before the training starts. When the map generator does an action, the tower
defense game simulator will give a reward based on whether the action makes
the current map state closer or further away from the goals. The goal is defined
by a minimum and a maximum value, denoted as gh and gl. For example, if our
goal for the generated map is to have 2 to 3 defense points, the minimum value is
2, and the maximum value is 3. In this study, we used calculating rewards used
by Khalifa et al.[4] in generating game levels using reinforcement learning. rint
reward is calculated as:

rint
.
=

{
p(vnew) + p(vold) (vnew < gl ∧ vold > gh) ∨ (vold < gl ∧ vnew > gh)

p(vnew)− p(vold) otherwise
,

(5.2)
where vold is the value before the action and vnew is the value after the action
(e.g., the number of defense points), and p(v), which refers to penalty, is defined
as:

p(v)
.
=

{
0 gl < v < gh

−min(|(v − gh)| , |(v − gl)|) otherwise
. (5.3)

In this study, the goals for the map include the following five aspects, where
areas refer to the connected areas in the map where enemies can move (see Figure
5.3):

• The number of areas on the map.

• The number of spawn points on the map.

• The number of defense points on the map.

• Whether defense points and spawn points are on the edge of the map.

• Number of specific tiles.

External Reward

When the solver successfully clears a level, it will give the map generator a positive
bonus. Otherwise, it will give a negative reward.

24

Figure 5.3: Screenshot of level 1-2 from tower defense simulator, which has two
areas.

5.3.4 End Conditions of Episodes

An episode of the map generator can be terminated when any one of the following
three situations occurs:

• The current number of steps is greater than or equal to the maximum
number of steps.

• the current change percentage of the map is greater than or equal to the
maximum change percentage.

• The goal has been met.

The maximum number of steps is denoted as Smax, and the maximum change
percentage is denoted as Cmax.

5.4 The Wave Generator

This section only briefly introduces the wave generator’s state, action, and reward
because the construction of the wave generator and the map generator is roughly
the same.

5.4.1 State

The only information that the wave generator can observe about the state of the
environment is the wave information mentioned in Section 5.2.1.

5.4.2 Action

The wave generator can take three types of actions, i.e., add, remove and modify
wave information.

5.4.3 Reward

The wave generator’s reward is set in much the same way as mentioned in Section.
The difference is that when setting the internal reward, the goal of the wave
generator contains the following two aspects.

25

• The level’s length. In this study, we calculated the level’s length as the
time when the last enemy appeared on the map.

• The total number of enemies in the level.

5.4.4 End Conditions of Episodes

The end conditions of episodes of the wave generator are the same as the map
generator.

26

Chapter 6

Experiments

6.1 Unity ML-Agents Toolkit

In this study, our reinforcement learning agents were trained using the UnityML-
Agents Toolkit (ML-Agents)[14]. ML-Agents is an open-source project based on
PyTorch[15]. Because ML-Agents is a plug-in for the game engine Unity, users
can easily create an environment where agents can be trained. Therefore, ML-
Agents has been used in research related to reinforcement learning[10][16]. This
section presents the hyperparameters we use in training.

6.1.1 Hyperparameters

In machine learning, a hyperparameter is a parameter whose value is used to
control the training process. In this section, we use the same nomenclature of
hyperparameters as ML-Agents.

• batch size: Number of experiences to collect before updating the policy
model.

• buffer size: Number of experiences in each iteration of gradient descent.

• learning rate: Initial learning rate for gradient descent.

• beta: Strength of the entropy regularization, which makes the policy more
random.

• epsilon: Influences how rapidly the policy can evolve during training.

• lambd : Regularization parameter used when calculating the generalized
advantage estimate.

• num epoch: Number of passes to make through the experience buffer when
performing gradient descent optimization.

• learning rate schedule: Determines how learning rate changes over time.
We only used linear in our experiments, which means that the learning
rate will be decayed linearly, reaching 0 at max steps of training.

• save steps : Number of trainer steps between snapshots.

• team change: Number of trainer steps between switching the learning team.

• swap steps : Number of ghost steps between swapping the opponent’s policy
with a different snapshot. A ghost step refers to a step taken by an agent
that is following a fixed policy and not learning.

27

• window : Size of the sliding window of past snapshots from which the agent’s
opponents are sampled.

6.2 Experiment about the solver action space

Because of the limited number of prior studies on the application of reinforcement
learning to tower defense games, we need to do some preliminary experiments to
verify which of the action spaces mentioned in Section 5.2.2 is more effective for
our tower defense game simulator. This section presents the experiment on solver
agents’ action space and the results. It should be noted that only solver agents
were used for training in this section.

6.2.1 Preconditions

In this experiment, we used three reward settings: Reward Setting A, Reward
Settings B, and Reward Settings C. Three reward settings are presented in Table
6.1, where Ne is the total number of enemies in the level, and Nl is the total
number of life count in the level.

The detail of the environment is presented in Table 6.2. Table 6.3 shows the
hyperparameters configuration in this experiment. We ensure the reproducibility
and stability of the experiment by setting the random seed to a fixed value. In
this experiment, we set the value of the random seed to 1.

Table 6.1: Reward Settings of the Solver

Action

Reward Value Reward Setting
A B C

Take an action -0.5 -0.5 -0.5

Take an invalid action -1 -1 -1

Agents destroy a tower in 3s after building -0.5 -0.5 -

Tower heals another tower 0.05 0.05 -

Tower attacks enemies 0.05 0.05 -

Tower eliminates a enemy 1 10/Ne -

Tower is destroyed by enemies -5 -5 -

Player’s lives count is deducted -10 −10/Nl -

Eliminate all enemies - 10 10

Lose all life count - -10 -10

Table 6.2: The detail of the environment

Name Version

Python interpreter 3.8.8
PyTorch 1.7.1
CUDA 11.0
ml-agents 0.26.0
Unity 2021.1.1.12f1

28

Table 6.3: Hyperparameters Configuration

Hyperparameters Value

batch size 16
buffer size 120
learning rate 0.0003
beta 0.005
epsilon 0.2
lambd 0.99
num epoch 3
learning rate schedule linear

6.2.2 Results

We trained all solvers for 100000 steps. The learning curves of agents are pre-
sented in Figure 6.1 and Figure 6.2. Then, we let solvers make inferences for 100
episodes in the same environment where they are trained, and Figure 6.3 shows
the results. Figure 6.4 and Figure 6.5 show histograms of the inference results
for each level.

Because the life count given to the player at the beginning of each level is not
fixed, in this experiment, we use the remaining life count as a percentage of the
initial life count to express the result, i.e., when the value is 1, it means that the
agents eliminated all the enemies; when the value is 0, it means that the agents
lost all the life count.

6.2.3 Discussions

From the experimental results (see Figure 6.3), we can learn that regardless of
which reward setting is used, the agents with medium action space have the best
overall performance, the agents with wide action space have the second-best per-
formance, and the agents with narrow action space have the worst performance1.

We also learned that agents performed best when using reward setting A,
second best when using reward setting C, and worst when using reward setting
B. By looking at the learning curves in Figure 6.1 and Figure 6.2, we can see
that the learning curve of agents using reward setting A is significantly more
unstable than that of agents using reward setting C. We believe that this is
because, in training, it is rare that all enemies are destroyed, or the player’s life
count is reduced to 0. This results in a slight difference in the cumulative reward
for each episode, while the auxiliary reward in reward setting A increases the
difference. Therefore, we believe that the auxiliary rewards encouraged agents
to explore the action space to some extent, such that agents who used reward
setting A performed better. Regarding the reason why agents with reward setting
B performed the worst, on the one hand, we think it also comes from the fact that
it is relatively rare to eliminate all enemies or to reduce the player’s life count
to 0, which causes both rewards to be ineffective. On the other hand, we believe
that we reduced the reward for eliminating enemies and the penalty for reaching
the defense point in reward setting B, which caused the agents to be insensitive
to the auxiliary rewards for these two actions.

In this experiment, we used levels that random players can not clear but can

1In our previous experiments, randomly generated random seeds were used, which is
inappropriate.[17].

29

Figure 6.1: The learning curves of agents trained in level 0-6, 0-7, 0-8, 0-9, 0-10,
0-11.

be cleared by experienced players. For comparison, level 0-1 and level 0-2 can
be cleared by random players because their initial life count is larger than the
total number of enemies (see Table 4.3). From Figure 6.6, we can see that the
success rate of agents using reward setting A and having medium action space is
greater than 50%in 7 out of 11 levels. Therefore, we believe it is possible to use
reinforcement learning to train agents to clear the levels of tower defense games.

30

Figure 6.2: The learning curves of agents trained in level 1-1, 1-2, 1-3, 1-4, 1-5.

6.3 Experiments of Level Generation

In this experiment, we conducted level generation based on level 0-1. This means
that at the end of each episode of generators, the game level adjusted by gener-
ators will be restored to the original level 0-1.

6.3.1 Preconditions

Based on the experiment results about the solver action space, we used the reward
setting A (see Table 6.1) for the solver. Table 6.6 shows the parameters related
to the calculation of the reward and end conditions of episodes for generators. In
this experiment, we define the external reward as 1 when the solver passes the
level and -1 when it fails.

As mentioned in Section 5.3.3, to calculate the internal rewards of generators,
we need to set goals for generators before training starts. We set goals for the map
generator and the wave generator based on our understanding of tower defense
game levels. For example, we set a goal that the number of tiles where towers

31

Figure 6.3: The remaining life count of agents after playing levels with different
reward settings and action space.

can not be placed on (i.e., the low or high forbidden tiles) in the level’s map
should not exceed ten percent of the total number of tiles. The reason for setting
such a goal is that if there are too many forbidden tiles, the player’s freedom will
be significantly reduced, which will make the level too difficult or not interesting
enough. Besides, the goals we set were all based on a vision we had for generators:
generators can adapt easy levels reasonably to be relatively difficult ones.

The goals of the map generator and the wave generator are presented in Table
6.4 and Table 6.5, respectively. In addition to the goals presented in the table,
we also set some special goals. Although these goals are difficult to describe in
the table, it is still possible to calculate the rewards by the method we mentioned
in Chapter 5. We set the following three special goals:

• All defense points and spawn points are on the edge of the map.

• The wave information consists only of enemies with codes 17 and 01.

• There is no wrong wave information, where the wrong refers to the wrong
type or non-existence of the spawn point the non-existence of the target
defense point.

The detail of the environment is presented in Table 6.2, which is the same
as the second experiment about the solver action space. Table 6.7 shows the
hyperparameters configuration of the solver and generators. In this experiment,
we set the value of the random seed to 1.

Table 6.4: Goals of Map Generator

Target Min Value Max Value

Number of areas 1 1
Number of spawn points 3 3
Number of defense points 2 2
Percentage of low forbidden tiles 0% 10%
Percentage of high forbidden tiles 0% 10%

Table 6.5: Goals of Wave Generator

Target Min Value Max Value

Level ’s length 60s 120s
Number of enemies 60 100

32

Figure 6.4: Histograms of the remaining life count for level 0-6, 0-7, 0-8, 0-9,
0-10, 0-11.

6.3.2 Results

We trained the solver 4000 episodes according to the training process defined in
Section 5.1, which means that both the map generator and the wave generator
were run for 4000 steps. Then, we let the agents inference in the order they were
trained and let generators generate levels at the end of episodes. We generated ten
levels based on level 0-1, i.e., ten sets of maps and wave information, respectively.
These ten levels were generated at the end of the 48th, 95th, 141st, 189th, 238th,
282nd, 335th, 384th, 435th, and 477th episode of solver agents.

33

Figure 6.5: Histograms of the remaining life count for level 1-1, 1-2, 1-3, 1-4, 1-5.

Figure 6.7 shows the original maps of levels 0-1 and the map from the gener-
ated maps. All of the generated maps are presented in Figure 6.8.

Figure 6.9 shows the statistics of the generated levels and the original levels.
The distribution of the number of enemies in all generated levels and the dis-
tribution of the number of enemies in the original levels are presented in Figure
6.10.

Table 6.6: Parameters of Generator

Parameters Value

λ -0.45
wint 0.9
Smax 100
Cmax 60%

34

Figure 6.6: The success rate of agents using the reward setting A and the medium
action space.

Table 6.7: Hyperparameters Configurations

Hyperparameters

Value Type of Agent

Solver Generator

batch size 16 10

buffer size 120 100

learning rate 0.0003 0.0003

beta 0.005 0.0005

epsilon 0.2 0.2

lambd 0.99 0.99

num epoch 3 3

learning rate schedule linear linear

save steps 5000 25

team change 20000 75

swap steps 400 10

window 10 10

6.3.3 Discussions

As can be seen from Table 4.3, the original level 0-1 player can clear uncondi-
tionally because the player’s initial life count is greater than the total number of
enemies. At the same time, we encourage the level generator to generate levels
that make solver agents vulnerable to failure by setting λ to a negative value.
As a result, we found that the map generator tends to replace tiles in the map
where towers could be placed with tiles where towers could not be placed, while
the wave generator had a trend of increasing the number of enemies. By doing
these, the generators adjust levels that the solver can unconditionally clear to
those that the solver cannot clear.

Regarding the distribution of the number of enemies in the wave information,

35

(a) (b)

Figure 6.7: The original maps of levels 0-1 (Left) and a generated map (Right).

we can learn from Figure 6.9 and Figure 6.10 that wave generator prefers to
increase the difficulty of levels by increasing the total HP of enemies in all waves
instead of the average DPS. Also, the wave generator seems to be more likely
to generate waves with enemies coded A9. Enemies coded A9 can attack towers
from a distance. We think this may be because the wave generator can quickly
destroy player-built towers by increasing the number of such enemies to get more
enemies to the defense point.

Also, as shown in Figure 6.7, generators changed many tiles at the bottom of
the map to tiles that do not allow players to build towers. We think this can be
seen as the map generator’s exploration of increasing the level’s difficulty at the
map design aspect.

Finally, we checked all the generated levels, and we found that among the
ten sets of maps and wave information generated, there were no maps and wave
information that reached the goals we set in Table 6.4 and Table 6.5. By observing
the generation results, on the one hand, we think the insufficient training of the
map generator is the main reason for not generating maps that meet the goals.
On the other hand, we found that the number of enemies in the waves generated
by the wave generator was usually less than the number of enemies we set. We
believe this is caused by the solver not being able to clear the level when the
number of monsters has not reached the goal.

We chose a level from the generated levels as an example to illustrate how
it does not meet our goals. Figure 6.11 shows the map of the generated level.
As shown in Figure 6.12, the generated map only meets our requirement for the
number of defense points, i.e., two defense points. The map has one enemy spawn
point, and this number is less than our goal. Because the total number of tiles
in this map is 54, the number of low forbidden tiles and high forbidden tiles are
both greater than our goal. There are three areas on the map, and this number
is also greater than our goal. One of the two defense points is not at the edge of
the map, which also does not meet our goal.

Figure 6.13 shows the wave information of the generated level, where the
meaning of the data names in the header row is as follows:

• Code: The code of the enemy.

• Number : The number of enemies.

• Interval : The interval of each enemy appearance time when the number of
enemies is greater than 1.

• StartTime: The appearance time of the first enemy.

36

Figure 6.8: The ten generated maps.

• Start : The location of the enemy spawn point on the map. This location
consists of a letter and a number. Figure 6.11 shows how the letter and
number indicate the map location.

• End : The location of the target defense point on the map.

• IsWrong : Whether the wave information is wrong.

• LastEnemyStartTime: The appearance time of the last enemy.

As shown in Figure 6.13, the last enemy’s appearance time exceeds our goal
for the length of the level. Also, the total number of enemies in this generated

37

Figure 6.9: Statistics of the generated wave information and the original wave
information.

(a) (b)

Figure 6.10: The distribution of the number of enemies in all generated levels
(Left) and the distribution of the number of enemies in the original levels (Right).

wave information is 55, which is less than our target. Also, the wave informa-
tion contains enemies other than the codes 17 and 01 and has the wrong wave
information.

38

Figure 6.11: The map of a generated level.

Figure 6.12: The ares (Left) and the number of tiles (Right) of the generated
map (Left).

Figure 6.13: The wave information of a generated level.

39

Chapter 7

Conclusions and Future Work

We developed a tower defense game simulator based on the rules of an existing
commercial game. We implemented some content based on the original game
into the tower defense game simulator. Not only agents but also human players
can play this tower defense game simulator, making it possible to test generated
levels with human players in the future. We plan to iterate the tower defense game
simulator we developed into an open-source project in the future. We first need to
remove existing non-original art assets in the tower defense game simulator that
would raise copyright issues. Then, we also need to improve the ease of use of
this project in terms of game content extensions and the configuration of agents.
Finally, we also need to write documentation to facilitate user participation in
the open-source project. We believe that such an open-source project could be
convenient for many researchers.

Because there is limited research related to the application of reinforcement
learning in tower defense games, we first need to explore how to train agents that
can successfully clear tower defense game levels through reinforcement learning.
To do this, we defined three different sizes of action spaces (narrow, medium,
and wide) and trained them in 11 levels using three different reward settings. A
conclusion we can draw from the results of the experiment is that we can train
an agent capable of clearing levels of Arknights with PPO and ResNet. Besides,
we found that the solver agent with the medium action space, which we defined
in Section 5.2.2 tends to have the highest success probability. At the same time,
we also found a trend that the success probability of agents decreases as the
difficulty of the game level increases. We believe that the results of the current
stage of research can inform future work, especially regarding the application of
reinforcement learning in tower defense games.

We have also conducted experiments on tower defense game level generation.
Although we have not been able to generate levels that meet our goals at this stage
of the experiments, our analysis of the trend of generators to make modifications
in map and wave information leads us to believe that it is still possible to generate
tower defense game levels using the ARLPCG-based approach.

Through the level generation experiments, we also identified a need for im-
provement in the training process we are using now. In the current training
process, the map generator and the wave generator only take one action, while
the solver is trained for a whole episode. This difference in the frequency of
taking actions leads to a situation where the solver is no longer learning, but
the map generator and wave generator are not yet fully trained. In the future,
it is possible to introduce experiments in which generators can modify multiple
aspects of the game level at once, e.g., the map generator modifies the types of
two tiles at once.

40

Also, only experiments with negative λ values were conducted in this study,
and in the future, we plan to conduct experiments with positive λ values. Fur-
ther, we plan to verify whether the practice of connecting the reward function
to the network as an auxiliary input in the work of Gisslén et al.[10] is valid for
generating tower defense game levels.

The method we are using to calculate internal rewards is the one proposed
by Khalifa et al.[4]. However, we note that there is still space for improvement
in calculating rewards. In this study, the reward calculation when the value is
outside the goal range before and after the action is taken is not unified (see
Equation 5.2). We plan to unify it and conduct experiments.

In addition, We believe that the agents with the ability to clear tower defense
game levels are vital for generating tower defense game levels. Such agents can
be used as part of a generative model and for automatic testing of game levels.
In this study, the purpose of the experiments on the solver is to find a relatively
proper action space and reward setting for the solver in the level generation
experiments, so we only made a few modifications to the existing neural network
architecture and conducted a few experiments. In the future, we would like to
improve the capability of reinforcement learning solver agents by improving the
neural network architecture, hyperparameter tuning, and reward shaping. After
successfully generating levels, we can introduce tests with human players to verify
whether our generated levels can be used in game development.

41

References

[1] A. M. Connor, T. J. Greig, and J. Kruse, “Evaluating the impact of procedu-
rally generated content on game immersion,” The Computer Games Journal,
vol. 6, no. 4, pp. 209–225, 2017.

[2] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmg̊ard, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation via
machine learning (pcgml),” 2018.

[3] R. R. Torrado, A. Khalifa, M. C. Green, N. Justesen, S. Risi, and J. Togelius,
“Bootstrapping conditional gans for video game level generation,” 2019.

[4] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “Pcgrl: Procedural con-
tent generation via reinforcement learning,” 2020.

[5] P. Avery, J. Togelius, E. Alistar, and R. P. Van Leeuwen, “Computational in-
telligence and tower defence games,” in 2011 IEEE Congress of Evolutionary
Computation (CEC), pp. 1084–1091, IEEE, 2011.

[6] J. Togelius, N. Shaker, and M. J. Nelson, “Introduction,” in Procedural Con-
tent Generation in Games: A Textbook and an Overview of Current Research
(N. Shaker, J. Togelius, and M. J. Nelson, eds.), pp. 1–15, Springer, 2016.

[7] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-based
procedural content generation: A taxonomy and survey,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 3, no. 3, pp. 172–186,
2011.

[8] J. Öhman, “Procedural generation of tower defense levels,” 2020.

[9] S. Liu, L. Chaoran, L. Yue, M. Heng, H. Xiao, S. Yiming, W. Licong, C. Ze,
G. Xianghao, L. Hengtong, D. Yu, and T. Qinting, “Automatic generation
of tower defense levels using pcg,” in Proceedings of the 14th International
Conference on the Foundations of Digital Games, FDG ’19, (New York, NY,
USA), Association for Computing Machinery, 2019.

[10] L. Gisslén, A. Eakins, C. Gordillo, J. Bergdahl, and K. Tollmar, “Adversarial
reinforcement learning for procedural content generation,” 2021.

[11] monitor1394, “unity-ugui-xcharts.” https://github.com/monitor1394/unity-
ugui-XCharts.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017.

[13] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron,
V. Firoiu, T. Harley, I. Dunning, et al., “Impala: Scalable distributed deep-
rl with importance weighted actor-learner architectures,” in International
Conference on Machine Learning, pp. 1407–1416, PMLR, 2018.

42

[14] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy,
Y. Gao, H. Henry, M. Mattar, and D. Lange, “Unity: A general platform
for intelligent agents,” 2020.

[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32 (H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

[16] O. E. L. Team, A. Stooke, A. Mahajan, C. Barros, C. Deck, J. Bauer, J. Syg-
nowski, M. Trebacz, M. Jaderberg, M. Mathieu, et al., “Open-ended learning
leads to generally capable agents,” arXiv preprint arXiv:2107.12808, 2021.

[17] Y. Xu and T. Tanaka, “Procedural content generation for tower defense
games:a preliminary experiment with reinforcement learning,” in Proceedings
of Game Programming Workshop 2021, vol. 2021, pp. 93–97, nov 2021.

43

